Bootstrapping factor-augmented regression models

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bootstrapping Principal Component Regression Models

Bootstrap methods can be used as an alternative for cross-validation in regression procedures such as principal component regression (PCR). Several bootstrap methods for the estimation of prediction errors and confidence intervals are presented. It is shown that bootstrap error estimates are consistent with cross-validation estimates but exhibit less variability. This makes it easier to select ...

متن کامل

Validating Geospatial Regression Models With Bootstrapping

Spatial statistical models have been used extensively in many geospatial and environmental studies over several decades. While being very important, the issues of testing and validation in spatial statistical models are rarely investigated carefully in spatial environmental studies. Often strict theoretical asymptotic assumptions used in those models are left unexplored or unanswered in many st...

متن کامل

Bootstrapping factor models with cross sectional dependence

We consider bootstrap methods for factor-augmented regressions with cross sectional dependence among idiosyncratic errors. This is important to capture the bias of the OLS estimator derived recently by Gonçalves and Perron (2014). We first show that a common approach of resampling cross sectional vectors over time is invalid in this context because it induces a zero bias. We then propose the cr...

متن کامل

Bootstrapping heteroskedastic regression models: wild bootstrap vs. pairs bootstrap

In regression models, appropriate bootstrap methods for inference robust to heteroskedasticity of unknown form are the wild bootstrap and the pairs bootstrap. The finite sample performance of a heteroskedastic-robust test is investigated with Monte Carlo experiments. The simulation results suggest that one specific version of the wild bootstrap outperforms the other versions of the wild bootstr...

متن کامل

BOOTSTRAPPING ROBUST REGRESSION Galen

M-estim::ztes The bootstrap principle is justified for robust M-estimates in regression. (A short proof justifying bootstrapping the empirical process is also given.) l.a.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Econometrics

سال: 2014

ISSN: 0304-4076

DOI: 10.1016/j.jeconom.2014.04.015